分解因式:1+a+a(1+a)+a(1+a)²+…………+a(1+a)n次 (n为正整数)
1个回答
展开全部
=(1+a)[(1+a)+a(1+a)+a(1+a)^2+…+a(1+a)^n-1]
=(1+a)^2[(1+a)+a(1+a)+a(1+a)^2+…+a(1+a)^n-2]
=(1+a)^3[(1+a)+a(1+a)+a(1+a)^2+…a(1+a)^n-3]
…
=(1+a)^n-2[(1+a)+a(1+a)+a(1+a)^2]
=(1+a)^n-1[(1+a)+a(1+a)]
=(1+a)^n(1+a)
=(1+a)^n+1
这个
分解因式
,你只要每次从里边分解出来个(1+a),细心点就可以看到总共分解了(n+1)次,答案就出来了。
=(1+a)^2[(1+a)+a(1+a)+a(1+a)^2+…+a(1+a)^n-2]
=(1+a)^3[(1+a)+a(1+a)+a(1+a)^2+…a(1+a)^n-3]
…
=(1+a)^n-2[(1+a)+a(1+a)+a(1+a)^2]
=(1+a)^n-1[(1+a)+a(1+a)]
=(1+a)^n(1+a)
=(1+a)^n+1
这个
分解因式
,你只要每次从里边分解出来个(1+a),细心点就可以看到总共分解了(n+1)次,答案就出来了。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询