已知角α的终边经过P(-3,4) (1)求sin(α+π/3)的值 (2)求tan2α的值

 我来答
拱杰祁雅柔
2020-06-28 · TA获得超过1038个赞
知道小有建树答主
回答量:1657
采纳率:0%
帮助的人:7.6万
展开全部
已知角α的终边经过P(-3,4),则可知点P到原点的距离r=根号[(-3)²+4²]=5
所以由任意角三角函数的定义可得:
sinα=4/5,cosα=-3/5,tanα=-4/3
所以:
sin(α+π/3)=sinα*cos(π/3)+cosα*sin(π/3)
=(4/5)*(1/2)+(-3/5)*(根号3)/2
=(4-3根号3)/10
而tan2α=2tanα/(1- tan²α)=2*(-4/3)÷(1- 16/9)=(-8/3)÷(-7/9)=24/7
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式