1/(tanx+2)的不定积分?
展开全部
∫1/(tanx + 2) dx
= ∫1/[(u^2+1) (u+2)] du, where u = tanx
= (1/5)∫1/(u+2) - (u-2)/(u^2+1) du, partial fraction
= (1/5)[ln|u+2| - (1/2)ln|u^2+1| + arctan(u)] + c
= (1/5)[ln|tanx+2| - (1/2)ln|tan^2x+1| + x] + c
= ∫1/[(u^2+1) (u+2)] du, where u = tanx
= (1/5)∫1/(u+2) - (u-2)/(u^2+1) du, partial fraction
= (1/5)[ln|u+2| - (1/2)ln|u^2+1| + arctan(u)] + c
= (1/5)[ln|tanx+2| - (1/2)ln|tan^2x+1| + x] + c
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询