积分中奇函数能舍掉么

 我来答
帐号已注销
2021-11-09 · TA获得超过77.1万个赞
知道小有建树答主
回答量:4168
采纳率:93%
帮助的人:170万
展开全部

不能。

因为积分域是关于原点对称的,这样的积分域下积分奇函数结果为零。

只要知道关于对称性的结论即可,设D=D1+D2,如果D1和D2关于x轴对称,被积函数f(x,y)是关于y的奇函数,那么在D上的二重积分∫∫f(x,y)dxdy=0,如果f(x,y)是关于y的偶函数,那么在D上的二重积分∫∫f(x,y)dxdy=2倍的在D1(或D2)上的二重积分。

性质

1. 两个奇函数相加所得的和或相减所得的差为奇函数。

2. 一个偶函数与一个奇函数相加所得的和或相减所得的差为非奇非偶函数。

3. 两个奇函数相乘所得的积或相除所得的商为偶函数。

4. 一个偶函数与一个奇函数相乘所得的积或相除所得的商为奇函数。

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式