证明 当X>0是 有不等式 1/1+x<In[(1+x)/x]<1/x

 我来答
茹翊神谕者

2023-02-16 · 奇文共欣赏,疑义相与析。
茹翊神谕者
采纳数:3365 获赞数:25153

向TA提问 私信TA
展开全部

简单分析一下,答案如图所示

百度网友036eb9c5099
2021-03-16 · TA获得超过1135个赞
知道小有建树答主
回答量:1333
采纳率:100%
帮助的人:7.4万
展开全部
先看右边:
两相除,再同时去以e为底指数,之后对e^x作麦克劳琳展开(其实就是证明e^x的增长速度大于1+x)
ln(1+x)/x=(1+x)/e^x=(1+x)/(1+x+x^2/2+x^3/6+....)<1
所以ln(1+x)<x,
在看左边:
在x=0时x/(1+x)=ln(1+x)=0;
当x>0时
对x/(1+x)和ln(1+x)分别求导数,
[1/(1+x)]'=[(1+x)-x/(1+x)^2]=1/[(1+x)^2]
[ln(1+x)]'=[1/(1+x)]
两导数作比:[1/(1+x)]'/[ln(1+x)]'=1/[(1+x)^2]/[1/(1+x)]=1/(1+x)<1
所以,在x>0时,x/(1+x)的增长速度小于ln(1+x),而在x=0出两者相等。
所以
x/(1+x)<ln(1+x)
证毕。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式