想做一名算法工程师需要学什么?
很多小伙伴说想成为一名合格的机器学习算法工程师是难上加难,那么想做一名算法工程师需要学什么呢?...
很多小伙伴说想成为一名合格的机器学习算法工程师是难上加难,那么想做一名算法工程师需要学什么呢?
展开
2021-07-19 · 移动学习,职达未来!
环球网校
环球网校成立于2003年,十多年来坚持“以学员为中心、以质量为本、以创新驱动”的经营理念,现已发展成为集考试研究、网络课程、直播课堂、题库、答疑、模考、图书、学员社区等为一体的规模化学习平台
向TA提问
关注
展开全部
1、业务认知&问题定位
首先要清楚你所要解决的问题是什么,是否需要复杂的算法求解。问题的定义来源于你对业务的认知和理解。我们经常陷入一种误区,觉得自己是一名算法工程师,遇到任务问题都想要用复杂的算法去求解。正所谓一顿操作猛如虎,得来的效果却很一般。因此,做事之前一定要在理解业务的基础上,把问题定位清楚,用合适的方法求解。
2、数据挖掘&分析
深度学习的应用能够突飞猛进的一个重要原因就是大数据的支撑。当前获取数据的成本很低,而数据清理和挖掘的成本很高,但非常重要。数据是模型的输入,是模型能够拟合的上限。在入模之前,你需要花一定的精力用于数据工作,这是必要也是值得的。因此,掌握数据能力也是一名算法工程师的必经之路。
3、算法策略
这是每位算法工程师的硬实力,有了清晰的问题和可用的数据后,我们需要选择合适的算法策略求解问题。就销量预估而言,由于特征大部分都是表格型,树模型及其变体成为首选的方案。通过树模型,你能够快速拿到一个不错的baseline。但千万不要停滞不前,你需要调研更多的先进的方案进行优化,即使此时能够拿到的受益不多,但请坚持专研的精神(近期时序模型中,热度很高的informer值得尝试)。此外,“人工智能,有多少人工就有多少智能”这句话在实际应用领域体现得淋漓尽致。策略也属于算法的一部分,人工策略有时候能够带来很大的受益,也能够找到更适合的算法优化方向。例如,我们在优化首猜的货品池时,考虑到首猜目前的推荐算法已经非常优秀了,但消费者的成交来源主要是搜索,我们通过人工分析选择了做增量货品供给的方式,拿到了不错的业务效果。基于此,我们也找到了更合适的选品算法优化方向。
4、离线实验和线上AB实验
实验是验证理论的最佳手段,也是最具有说服力的。我们需要找到几个合适的指标进行优化,并且要保证离线效。
首先要清楚你所要解决的问题是什么,是否需要复杂的算法求解。问题的定义来源于你对业务的认知和理解。我们经常陷入一种误区,觉得自己是一名算法工程师,遇到任务问题都想要用复杂的算法去求解。正所谓一顿操作猛如虎,得来的效果却很一般。因此,做事之前一定要在理解业务的基础上,把问题定位清楚,用合适的方法求解。
2、数据挖掘&分析
深度学习的应用能够突飞猛进的一个重要原因就是大数据的支撑。当前获取数据的成本很低,而数据清理和挖掘的成本很高,但非常重要。数据是模型的输入,是模型能够拟合的上限。在入模之前,你需要花一定的精力用于数据工作,这是必要也是值得的。因此,掌握数据能力也是一名算法工程师的必经之路。
3、算法策略
这是每位算法工程师的硬实力,有了清晰的问题和可用的数据后,我们需要选择合适的算法策略求解问题。就销量预估而言,由于特征大部分都是表格型,树模型及其变体成为首选的方案。通过树模型,你能够快速拿到一个不错的baseline。但千万不要停滞不前,你需要调研更多的先进的方案进行优化,即使此时能够拿到的受益不多,但请坚持专研的精神(近期时序模型中,热度很高的informer值得尝试)。此外,“人工智能,有多少人工就有多少智能”这句话在实际应用领域体现得淋漓尽致。策略也属于算法的一部分,人工策略有时候能够带来很大的受益,也能够找到更适合的算法优化方向。例如,我们在优化首猜的货品池时,考虑到首猜目前的推荐算法已经非常优秀了,但消费者的成交来源主要是搜索,我们通过人工分析选择了做增量货品供给的方式,拿到了不错的业务效果。基于此,我们也找到了更合适的选品算法优化方向。
4、离线实验和线上AB实验
实验是验证理论的最佳手段,也是最具有说服力的。我们需要找到几个合适的指标进行优化,并且要保证离线效。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询