量子力学基本理论

 我来答
科创17
2022-05-19 · TA获得超过5900个赞
知道小有建树答主
回答量:2846
采纳率:100%
帮助的人:175万
展开全部

一、哥本哈根量子力学诠释

量子力学是研究微观粒子的运动状态和运动规律,微观粒子电子、中子、质子,夸克和量子一样都是量子力学的研究范畴,但是实体粒子和量子是不同的,实体粒子有质量,而量子是能量子,它是没有静止质量的。量子力学是在20世纪初由玻尔、海森堡、薛定谔、泡利、普朗克等物理学家建立的,他们组成了哥本哈根学派,哥本哈根诠释是目前对量子力学本质的正统解释。爱因斯坦的光子理论学说推动和发展了量子力学。哥本哈根对量子力学的诠释,就是认为微观粒子在微观空间中的运动状态是不确定的,运动状态可以用波函数来描述,薛定谔方程的波函数Ψ(x、y、z、t),可以计算粒子在微观空间的分布概率。泡利量子理论的原子轨道就是波函数的描述行为,通过薛定谔方程计算得到原子核外电子的原子轨道和原子轨道量子数。原子核外电子在空间分布状态是不确定的,电子单缝衍射,相同的电子通过狭缝射在屏幕上,随着电子数目的增多,电子以不同的概率分布呈现出明暗条纹,这些都说明了粒子在微观空间中呈概率分布的,电子在某时刻它的运动状态是不确定的。

在爱因斯坦看来,波函数概率描述电子的轨道并不是电子真实的运动情况,电子的运动状态是精确的,准确的,用概率描述自然现象只是人在研究微观粒子的过程中采用的一种不得已的手段。哥本哈根学派总是用概率粗略的描述一群电子的运动规律,而不能准确地描述单个电子真实的运动规律,这只能说明量子力学是不完备的,真正完备的量子力学肯定可以描述单个电子精确的运动规律。爱因斯坦反对哥本哈根诠释中的不确定原理,所以他说上帝不会掷骰子。他对电子的概率分布理论不满,爱因斯坦认为核外电子在某个时刻的位置和速度都是可以准确测定的,只是没有找到准确测定的方法和完整的底层理论。

二、薛定谔方程

量子力学是研究微观粒子的状态和运动的规律,薛定谔方程是描述微观粒子运动状态的基本方程。微观粒子在空间某时刻的位置是不确定的,是随机的,薛定谔方程的波函数就是用来描述电子在空间的分布概率,薛定谔方程表达式。

薛定谔方程波函数ψ(x、y、z、t),粒子势能函数V(x、y、z、t)都是时间和位置的函数,h普朗克常数,i虚数单位,m粒子质量。

波函数ψ模的平方表示粒子在t时刻在某位置出现的概率,也就是粒子的概率密度,而波函数Ψ本身是概率的平方根,是一个非物理量,本身没有物理意义,只是描述粒子在空间分布的概率波动。薛定谔方程,描述了微观世界粒子的运动状态和运动规律,牛顿定律描述了宏观世界物体的运动状态和运动规律。薛定萼方程可以计算原子核外电子的分布概率,计算电子层的原子轨道和原子轨道的量子数。

三、薛定谔的猫

薛定谔猫的实验是将一只猫关在一个箱子里,箱子里有一个瓶子装有氰化钾,还有一个瓶子装有放射性镭,镭原子核衰变存在几率,如果镭发生衰变,就会释放出中子触发机关,打碎装有氰化物的瓶子,这样一来猫就会死,如果镭不衰变就不会释放出中子,装有氰化物的瓶子就不会碎,猫就能活。在箱子门没有打开前,猫可能死也可能活概率为50%,处于生死的叠加态,当门打开后这种叠加态就坍塌成一种确定的状态。用薛定谔的猫比喻微观粒子状态,在没有测量以前粒子的位置是不确定的,可能在不同的位置,粒子状态处于叠加态,当被测量后,量子的位置就被确定了,也就是说粒子的叠加态坍塌成一种确定状态。

薛定谔的猫,常用来形容不确定的事物,比喻一种事件,在没有确定之前,可能是A也可能是B,处于AB的叠加态,当经过验证后,叠加态就能坍塌成一种确定的事件。

四、泡利原理

泡利不相容原理是原子物理和分子物理的基本理论,也是量子力学的重要基础,泡利的量子理论是研究原子核外电子的分布规律及电子层的复杂结构。通过薛定谔方程波函数ψ(x、y、z、t)求解和统计,得到了原子轨道和原子轨道四个量子数,薛定谔方程对于简单系统,如氢原子中电子的状态薛定谔方程能准确求解,对于复杂系统,如z个电子的原子,由于电子受屏蔽效应相互作用势能会发生改变,所以只能近似求解。原子轨道和轨道量子数就是薛定谔方程的近似解。原子轨道的四个量子数决定了电子的运动状态,其中n(主量子数),决定了电子能级;l(角量子数),决定了亚层轨道的形状和电子的角动量,电子运动的角动量和电子的角量子数有关,M= l(l+1)*(h/2π) ,l=0,1,2,……。l 越大,角动量越大,能量越大。m(磁量子数),表示亚层的原子轨道,决定了原子轨道在空间的伸展方向;ms自旋量子数,表示原子轨道两个电子的自旋方向。四个量子数决定了电子的能量、轨道形状、伸展方向和电子自旋方向,也就是说决定了电子在空间中的状态。泡利原理可表述在原子内不可能有两个或两个以上的电子具有完全相同的4个量子数,或者说在量子数m,l,n相同情况下,一个原子轨道上最多可容纳两个电子,而这两个电子的自旋方向必须相反。

泡利不相容原理揭示了原子复杂的电子层结构,非常方便地解释不同原子之间化学键的结合机理和相互作用的原理。元素的化学性质与原子结构最外层的电子数有关,不同的元素如果最外层的电子的数量相同,则所表现出的性质相似,周期表就是依据这些原理编制出来的。

五、海森堡的测不准原理

测量粒子在微观空间某时刻的位置和速度,我们通过仪器发射一定频率的光子来测量,当光子去照射电子,光子和电子发生干扰作用,假如你先测量电子的位置,由于光子对电子的作用,这时它的运动速度就发生了变化,所以你在测量位置的同时,测量的速度肯定有很大的误差,并且光子的频率越大,测量位置就会越准确,而测量的速度就越不准确;反过来你先测量速度,同样会对位置产生很大的影响。海森堡测不准原理 x p h/4π(p动量),意思是测量的位置和动量误差乘积是个确定的常数,说明不能同时准确测量电子的速度和位置,当速度测量误差越小,位置测量的误差就越大;位置测量误差越小,速度测量误差就越大。这就是海森堡测不准原理。测不准原理不是仪器精度的问题,也不是方法问题,而是在仪器测量时光子对测定粒子有干扰作用。

六、爱因斯坦的光子理论

光子理论由爱因斯坦提出(建立在普朗克能量子的概念上),爱因斯坦的量子理论推动了量子力学的发展。量子就是能量子,光子就是量子,量子和实体粒子不同,量子没有静止质量,实体粒子如电子、质子、中子、夸克等有静止质量,光子的能量E hν(ν为频率,h为普朗克常量),光子的能量E=mc²(m是光子的运动质量),结合E=hν,可以得到光子的动量p=mc=hν/c。光子是组成光的最小能量单位。这些就是爱因斯坦的光子理论。

当物质受到光的照射时,如果光子的能量满足原子的能级差hv E₂-E₁,原子就会吸收这个光子,电子从能级E₁跳跃到能级E₂轨道上处于激发态,激发态电子是不稳定的,大约经过10-8秒以后,激发态电子将返回到低能级E₁上,并将电子跃迁时所吸收的能量以光子的形式释放出去。当原子吸收的光子能量大于电子的逸出功,电子就会发生电离产生光电流。这就是爱因斯坦的光电理论。

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式