圆内接四边形的性质
圆内接四边形是指四个顶点均在同一圆上的四边形。圆内接四边形拥有很多几何性质。本文整理了其性质,欢迎阅读。
圆内接四边形性质
以下图所示圆内接四边形ABCD为例,圆心为O,延长AB至E,AC、BD交于P,则:
1.圆内接四边形的对角互补:∠BAD+∠DCB=180°,∠ABC+∠ADC=180°
2.圆内接四边形的任意一个外角等于它的内对角:∠CBE=∠ADC
3.圆心角的度数等于所对弧的圆周角的度数的两倍:∠AOB=2∠ACB=2∠ADB
4.同弧所对的圆周角相等:∠ABD=∠ACD
5.圆内接四边形对应三角形相似:△ABP∽△DCP(三个内角对应相等)
6.相交弦定理:AP×CP=BP×DP
7.托勒密定理:AB×CD+AD×CB=AC×BD
四边形性质
(1)如果一个四边形是平行四边形,那么这个四边形的两组对边分别相等。
(简述为“平行四边形的两组对边分别相等”)
(2)如果一个四边形是平行四边形,那么这个四边形的两组对角分别相等。
(简述为“平行四边形的两组对角分别相等”)
(3)如果一个四边形是平行四边形,那么这个四边形的邻角互补
(简述为“平行四边形的邻角互补”)
(4)夹在两条平行线间的平行线段相等。
(5)如果一个四边形是平行四边形,那么这个四边形的两条对角线互相平分。
(简述为“平行四边形的对角线互相平分”)