向量及其运算

 我来答
濒危物种1718
2022-07-16 · TA获得超过1.2万个赞
知道大有可为答主
回答量:6406
采纳率:100%
帮助的人:44.2万
展开全部

向量的表示 : 以 为起点、 为终点的有向线段表示的向量记为 , 有时也用一个黑体字母(书写时, 在字母上面加一箭头)来表示(见图1 ), 如 a 或 。

向量的模 : 向量的大小(数学上指有向线段的长度)叫作向量的模,记作|a|, 。
模为1的向量称为 单位向量 ,记作 e。
模为0的向量称为 零向量 ,记作 0。
零向量的方向可以看作是任意的。

向量 a b 的始点重合, 在两向量的所在平面上, 若一个向量逆时针方向转过角度 θ后可与另一个向量正向重合(见图2), 则称θ为 向量 a b 的夹角, 记作(a, b), 即
θ = ( ) = ( ) (0≤ θ ≤π)

如果向量 的始点A与终点B在u轴上的投影分别为A′、B′(见图3), 则u轴上的有向线段A′B′的值A′B′称为向量AB在u轴上的投影, 记作 = A′B′,u轴称为 投影轴

定理1
向量 在 u 轴上的投影等于向量的模乘以u轴与向量 的夹角 θ 的余弦,即
cos θ

a 可分解为三个分别平行于x轴、y轴和z轴的向量 a a a , 它们称为a在 x 轴、y 轴和 z 轴的三个 分向量 , 显然 a = a + a + a (见图4)。

若用 i j k 分别表示与 x 轴、 y 轴和 z 轴正向一致的三个单位向量, 称它们为 基本单位向量 , 则有 a =( ) i a = ( ) j a = ( ) k , 因此
a = a + a + a = ( ) i + ( ) j + ( ) k = & i + & j + & k , 称上式为向量 a 按 基本单位向量的分解式 a 向量表示式
将 、 、 称为向量 a 坐标 , 记为 a = ( , , ) , 也称为向量a的 坐标表示式

三个 分向量 ( a a a )
a = a + a + a
向量表示式
a = & i + & j + & k
坐标表示式
a = ( , , )

a 为任意一个非零向量, 又设 为 a 与三坐标轴正向之间的夹角(0≤α, β, γ <π), 如图5所示, 则 分别为向量 a 方向角 。 由于向量坐标就是向量在坐标轴上的投影, 故有
= | a | , = | a | , = | a | ,
其中, 称为向量 a 方向余弦 , 通常用来表示向量的方向。
由模的定义, 可知向量 a 的模为
| a | = =

=
=
=
由此可得 即任一向量的方向余弦的平方和为 1。
单位向量

定义1 给定向量 a b , 我们将 |a| |b| 及它们的夹角θ的余弦的乘积,称为向量 a b 数量积 , 记为 a · b , 即

(1) ```````````` ( )
(2)
(3) 若 , , 则 。

(1) 交换律:
(2) 分配律:
(3) (其中 λ 是数)

若 , 则

= 0

定义2 若由向量 与 所确定的一个向量 满足下列条件(见图5):
(1) 的方向既垂直于 又垂直于 , 的指向按右手规则从 转向 来确定;
(2) 的模 ,则称向量 为向量 与 的向量积(或称 外积、 叉积 ), 记为

(1) 反交换律:
(2) 分配律:
(3) 结合律: (其中 λ 是实数)

注意 第二项为(-1)

由此可得:
若 , 则


(亦即a=λb, λ为实数)

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
富港检测技术(东莞)有限公司_
2024-04-02 广告
正弦振动多用于找出产品设计或包装设计的脆弱点。看在哪一个具体频率点响应最大(共振点);正弦振动在任一瞬间只包含一种频率的振动,而随机振动在任一瞬间包含频谱范围内的各种频率的振动。由于随机振动包含频谱内所有的频率,所以样品上的共振点会同时激发... 点击进入详情页
本回答由富港检测技术(东莞)有限公司_提供
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式