万有引力的推导公式和过程
1个回答
展开全部
万有引力定律是牛顿在借用开普勒第三行星运动定律和自己的分析思考下得出的.开普勒第三行星运动定律:所有行星运动轨迹的半长轴的三次方与其运动周期的平方的比值为定值.为简化推导,设行星运动轨迹为圆,其轨道半径为r,周期为T.相应的有:r^3/T^2=K(定值).设太阳质量为M,行星的质量为m,行星的加速度为a.则由“牛二”定律,行星作匀速圆周运动所受到的向心力F=ma=m(w^2)r=m[(4π^2)/T^2]r=(4π^2)K×(m/r^2).可见F正比于m,于是牛顿想到既然力的作用是相互的,就应该有F也正比于M.由此F=(4π^2)K×(m/r^2)=GM×(m/r^2),比例系数G即为我们所熟知的万有引力常量.而K的大小与中心天体的质量有关.
希望能对你有所帮助
希望能对你有所帮助
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询