什么是机器学习
机器学习是一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、算法复杂度理论等多门学科。专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能。
它是人工智能的核心,是使计算机具有智能的根本途径。
机器学习有下面几种定义:
(1) 机器学习是一门人工智能的科学,该领域的主要研究对象是人工智能,特别是如何在经验学习中改善具体算法的性能。
(2) 机器学习是对能通过经验自动改进的计算机算法的研究。
(3) 机器学习是用数据或以往的经验,以此优化计算机程序的性能标准。
扩展资料:
基于学习策略的机器学习分类:
(1) 模拟人脑的机器学习
符号学习:模拟人脑的宏现心理级学习过程,以认知心理学原理为基础,以符号数据为输入,以符号运算为方法,用推理过程在图或状态空间中搜索,学习的目标为概念或规则等。符号学习的典型方法有记忆学习、示例学习、演绎学习.类比学习、解释学习等。
神经网络学习(或连接学习):模拟人脑的微观生理级学习过程,以脑和神经科学原理为基础,以人工神经网络为函数结构模型,以数值数据为输人,以数值运算为方法,用迭代过程在系数向量空间中搜索,学习的目标为函数。典型的连接学习有权值修正学习、拓扑结构学习。
(2) 直接采用数学方法的机器学习
主要有统计机器学习。
统计机器学习是基于对数据的初步认识以及学习目的的分析,选择合适的数学模型,拟定超参数,并输入样本数据,依据一定的策略,运用合适的学习算法对模型进行训练,最后运用训练好的模型对数据进行分析预测。
统计机器学习三个要素:
模型(model):模型在未进行训练前,其可能的参数是多个甚至无穷的,故可能的模型也是多个甚至无穷的,这些模型构成的集合就是假设空间。
策略(strategy):即从假设空间中挑选出参数最优的模型的准则。模型的分类或预测结果与实际情况的误差(损失函数)越小,模型就越好。那么策略就是误差最小。
算法(algorithm):即从假设空间中挑选模型的方法(等同于求解最佳的模型参数)。机器学习的参数求解通常都会转化为最优化问题,故学习算法通常是最优化算法,例如最速梯度下降法、牛顿法以及拟牛顿法等。
参考资料:百度百科-机器学习(多领域交叉学科)
2018-10-31 广告