:AB=根号{(1+k^2)*[(X1+X2)^2-4X1X2]}是如何推导来的? 要说明详细些哦,急,急,

 我来答
科创17
2022-06-17 · TA获得超过5900个赞
知道小有建树答主
回答量:2846
采纳率:100%
帮助的人:175万
展开全部
这是解析几何里的弦长公式
是这么推导出来的.假设直线的方程是y=kx+b
直线和曲线联立后的方程是ax^2+bx+c=0,它的两根就是直线和曲线的交点
我们这么想,假设这么一根迹扰直线,要求它线上两点间的距离.我们可以先求出两个点的横坐标之差的绝对值,直线的倾斜角是a,tana=k,那么两点纵扮州胡坐标之差和横坐标之差的厅拦比值就是k.如果横坐标之差是d的话,纵坐标之差就是dk,两点间的距离用勾股定理来求,就是d*根号(k^2+1)
而d怎么求呢?要求两点纵坐标之差,已知x1+x2,x1x2,那么
(x1-x2)^2=(x1+x2)^2-4x1x2
所以两点纵坐标之差就是根号下(x1-x2)^2,也就是根号[(x1+x2)^2-4x1x2]
d求出来了,代入后就得到弦长公式了,为
根号(k^2+1) * 根号[(x1+x2)^2-4x1x2]
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式