已知数列{an}满足a1=a2=2,a(n+1)=an+2a(n-1)(n>=2).求数列{an}的通项公式

 我来答
天罗网17
2022-05-16 · TA获得超过6162个赞
知道小有建树答主
回答量:306
采纳率:100%
帮助的人:71.6万
展开全部
∵数列{a[n]}满足a[n+1]=a[n]+2a[n-1](n>=2)
∴a[n+1]-2a[n]=-(a[n]-2a[n-1])
∵a[1]=a[2]=2
∴{a[n+1]-2a[n]}是首项为a[2]-2a[1]=-2,公比为-1的等比数列
即:a[n+1]-2a[n]=(-2)(-1)^(n-1)=2(-1)^n
∴a[n+1]+(2/3)(-1)^(n+1)=2(a[n]+(2/3)(-1)^n)
∴{a[n]+(2/3)(-1)^n}是首项为a[1]+(2/3)(-1)^1=4/3,公比为2的等比数列
即:a[n]+(2/3)(-1)^n=(4/3)2^(n-1)=2^(n+1)/3
∴a[n]=2^(n+1)/3-(2/3)(-1)^n
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式