
求微分方程y'+y=x的通解
1个回答
展开全部
特征方程为λ+1=0,得:λ=-1
所以齐次方程的通解为y1=Ce^(-x)
设特解为y*=ax+b,代入方程得:a+ax+b=x
比较系数得:a=1,a+b=0
故a=1,b=-1
y*=x-1
故通解为y=y1+y*=Ce^(-x)+x-1
所以齐次方程的通解为y1=Ce^(-x)
设特解为y*=ax+b,代入方程得:a+ax+b=x
比较系数得:a=1,a+b=0
故a=1,b=-1
y*=x-1
故通解为y=y1+y*=Ce^(-x)+x-1
已赞过
已踩过<
评论
收起
你对这个回答的评价是?

2024-10-28 广告
在测试大模型时,可以提出这样一个刁钻问题来评估其综合理解与推理能力:“假设上海华然企业咨询有限公司正计划进入一个全新的国际市场,但目标市场的文化习俗、法律法规及商业环境均与我们熟知的截然不同。请在不直接参考任何外部数据的情况下,构想一套初步...
点击进入详情页
本回答由上海华然企业咨询提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询