求解微分方程dy/dx=(a/(x+y))^2
1个回答
展开全部
设u=x+y
dy=du-dx
原式可化为du/dx-1=(a/u)^2
1/(1+(a/u)^2)*du=dx
两边积分得
∫1/(1+(a/u)^2)du=x+c
∫u^2/(u^2+a^2)du=x+c
∫(1-a^2/(u^2+a^2)du=x+c
∫(1-1/(1+(u/a)^2)du=x+c
u-a∫1/(1+(u/a)^2)d(u/a)=x+c
u-a*arctan(u/a)=x+c
u=x+y
代人得
x+y-a*arctan((x+y)/a)=x+c
y=a*arctan[(x+y)/a]+c
c是常数
dy=du-dx
原式可化为du/dx-1=(a/u)^2
1/(1+(a/u)^2)*du=dx
两边积分得
∫1/(1+(a/u)^2)du=x+c
∫u^2/(u^2+a^2)du=x+c
∫(1-a^2/(u^2+a^2)du=x+c
∫(1-1/(1+(u/a)^2)du=x+c
u-a∫1/(1+(u/a)^2)d(u/a)=x+c
u-a*arctan(u/a)=x+c
u=x+y
代人得
x+y-a*arctan((x+y)/a)=x+c
y=a*arctan[(x+y)/a]+c
c是常数
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询