SPSS如何判断显著性?
2023-12-06 · 百度认证:SPSSAU官方账号,优质教育领域创作者
差异研究通常包括以下几类分析方法,分别是方差分析、t 检验和卡方检验。这三个分析方法的异同点如下:
其实核心的区别在于:数据类型不一样。如果是定类和定类,此时应该使用卡方分析;如果是定类和定量,此时应该使用方差或者t 检验。
方差和t 检验的区别在于,对于t 检验的X来讲,其只能为2个类别比如男和女。如果X为3个类别比如本科以下,本科,本科以上;此时只能使用方差分析。
现实中还有其它的差异对经分析方法,比如非参数检验,单样本t 检验,配对t 检验等。区别如下:
比如SPSSAU的t检验:
t 检验(独立样本t 检验),用于分析定类数据与定量数据之间的关系情况.例如研究人员想知道两组学生的智商平均值是否有显著差异.t 检验仅可对比两组数据的差异,如果为三组或更多,则使用方差分析.如果刚好仅两组,建议样本较少(低于100时)使用t 检验,反之使用方差分析。
首先判断p 值是否呈现出显著性,如果呈现出显著性,则说明两组数据具有显著性差异,具体差异可通过平均值进行对比判断
SPSSAU的操作如下:
这张图里的方差分析F检验结果不显著。看显著性检验结果有两种方法。
1、根据F值判断。
SPSS输出的表格中“F”即样本的计算结果。之后考虑显著性检验的临界值α和F统计量的自由度,在F检验表中查找F的临界值(下表是α=0.1的F临界值表,如果α设定为0.05或0.01则应查找对应的F检验表)。最后,将SPSS计算出的F值与F临界值比较,若大于临界值则可以说在α的意义下结果显著,否则不显著。
2、根据Sig.判断。
SPSS输出的Sig.结果即将计算出的F值根据自由度转换为了P-Value,可以直接根据Sig.判断是否显著,若Sig.<α则结果显著,否则不显著,这一方法更方便。
在此基础上拓展一下,z检验、t检验、Chi-Square检验(卡方检验)等判断显著或进行假设检验的方式都是类似的,或者根据对应的检验表,或者根据P-Value。如果根据检验表判断,可分为三步:
第一步,计算统计量的观测值,例如此处的F值,这一步SPSS会直接输出;
第二步,查表,根据自由度和α找到临界值;
第三步,将SPSS输出的统计量观测值与查表所得临界值进行对比,得出结果。
相较之下,根据P-Value来判断则非常简单,SPSS已经根据样本计算并输出了P-Value,只需将P-Value和α对比即可。
此外在一些情况下,SPSS也会自动以星号(*)的数量对是否显著进行标记,例如做相关系数分析时,在0.01级别相关性显著会标注出“**”,在0.05级别相关性显著标注“*”等等。