设α=(1,2,3),β=(1,1/2,1/3),设矩阵A=α^Tβ,其中α^T是α的转置,求A^n?

 我来答
京斯年0GZ
2022-11-17 · TA获得超过6204个赞
知道小有建树答主
回答量:306
采纳率:100%
帮助的人:74.2万
展开全部
显然
A^n
=α^Tβα^Tβα^Tβ……α^Tβα^Tβ
=α^T*(βα^T)*(βα^T)……(βα^T)*β
注意到βα^T=1+(1/2)*2+(1/3)*3=3

A^n
=α^T*(βα^T)*(βα^T)……(βα^T)*β
=3^(n-1) α^Tβ

α^Tβ =
(1,1/2,1/3
2,1,2/3
3,3/2,1)
所以
A^n=
(1,1/2,1/3 * 3^(n-1)
2,1,2/3
3,3/2,1),3,A^n=(3^(n-1))[1 1/2 1/3;2 1 2/3;3 3/2 1],1,
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式