1/(x^2+x)怎么裂项求和
3个回答
展开全部
an=1/x(x+1)
=[(x+1)-x]/x(x+1)
=(x+1)/x(x+1)-x/x(x+1)
=1/x-1/(x+1)
所以Sn=1-1/2+1/2-1/3+……+1/x-1/(x+1)
=1-1/(x+1)
=x/(x+1)
=[(x+1)-x]/x(x+1)
=(x+1)/x(x+1)-x/x(x+1)
=1/x-1/(x+1)
所以Sn=1-1/2+1/2-1/3+……+1/x-1/(x+1)
=1-1/(x+1)
=x/(x+1)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
an=1/x(x+1)
=[(x+1)-x]/x(x+1)
=(x+1)/x(x+1)-x/x(x+1)
=1/x-1/(x+1)
所以Sn=1-1/2+1/2-1/3+……+1/x-1/(x+1)
=1-1/(x+1)
=x/(x+1)
=[(x+1)-x]/x(x+1)
=(x+1)/x(x+1)-x/x(x+1)
=1/x-1/(x+1)
所以Sn=1-1/2+1/2-1/3+……+1/x-1/(x+1)
=1-1/(x+1)
=x/(x+1)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
an=1/x(x+1)
=[(x+1)-x]/x(x+1)
=(x+1)/x(x+1)-x/x(x+1)
=1/x-1/(x+1)
所以Sn=1-1/2+1/2-1/3+……+1/x-1/(x+1)
=1-1/(x+1)
=x/(x+1)
=[(x+1)-x]/x(x+1)
=(x+1)/x(x+1)-x/x(x+1)
=1/x-1/(x+1)
所以Sn=1-1/2+1/2-1/3+……+1/x-1/(x+1)
=1-1/(x+1)
=x/(x+1)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询