复变函数的可导性与解析性的联系和区别是什么?

 我来答
帐号已注销
2022-09-29
知道答主
回答量:0
采纳率:0%
帮助的人:0
展开全部

一、作用不同:

可导是点的性质,一般说在某点处可导。

如果说在D上可导,则是指在D的每一点都容可导。

二、解析不同:

解析是点的邻域的性质,在z处解析是指在z的某一个邻域D内处处可导。

在z处可导但在z处不一定解析,但在z处解析则在z处一定可导。

三、性质不同:

函数的解析性:值域等相关shu性质的讨论,是对函数整体变化的研究。

函数的可导性:就是左右极限是否一致,是对函数某一部分的研究。

扩展资料:

复变数复值函数:设A是一个复数集,如果对A中的任一复数z,通过一个确定的规则有一个或若干个复数w与之对应,就说在复数集A上定义了一个复变函数,记为w=ƒ(z)

对于z∈A,(z)的全体所成的数集称为A关于的像,记为(A)。函数规定了A与(A)之间的一个映射。例如在w=z2的映射下,z平面上的射线argz=θ与w平面上的射线argw=2θ对应;如果(A)∈A*,称把A映入A*。如果(A)=A*,则称把A映成A*,此时称A为A*的原像。

参考资料来源:百度百科-复变函数

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式