数列通项的七种方法

 我来答
今天困困了吗WW
2022-12-11 · TA获得超过118个赞
知道小有建树答主
回答量:1096
采纳率:100%
帮助的人:16.6万
展开全部

数列通项方法如下:

累加法:利用an=a1+(a2-a1) +... (an-an-1)通项公式的方法称为累加法。累加法是求型如an+1=an+f(n)的递推数列通项公式的基本方法(f(n)可求前n项和)

例1.已知数列an满足an+1=an+2n+1,a1=1,求数列an的通项公式解:由an+1=an+2n+1得an+1-an=2n+1则

an=(an-an-1) +(an-1-an-2) +...+ (a3-a2) + (a2-a1) +a1=[2 (n-1) +1]+[2 (n-2) +1]+...+ (2x2+1) + (2x1+1) +1=2[(n-1) +(n-2) +...+2+1]+ (n-1) +1

=2+ (n-1) +1

= (n-1) (n+1) +1

=n2

累乘法:利用恒等式an=a1...(an0,n?n)求通项公式的方法称为累乘法,累乘法是求型如:an+1=g (n)an的递推数列通项公式的基本方法(数列g (n)可求前n项)

例3.已知数列fan中a1=,an=an-1 (n?奥2)求数列an的通项公式。

解:当n? 叟2时,=,=,=,...=将这n-1个式子累乘,得到=,从而an=x=,当n=1时,==a1,所以an=。

注:在运用累乘法时,还是要特别注意项数,计算时项数容易出错

公式法:利用熟知的的公式求通项公式的方法称为公式法,常用的公式有an=Sn-Sn-1(n?

叟2),等差数列或等比数列的通项公式。

例4.已知Sn为数列an的前n项和,且Sn=2n+1,求数列an的通项公式解:当n=1时,a1=S1=2+1=3,当n? 叟2时,an=Sn-Sn-1= (2n+1) - (2n-1+1) =2n-1.而n=1时,21-1=1fa1,..an3 (n=1) 2n-1 (n? 2)。

四、构造新数列(待定系数法): @将递推公式an+1=qan+d (g,d为常数,q0,d0) 通过an+1+x)=q (an+x)与原递推公式恒等变成an+1+=q (an+)的方法叫构造新数列

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式