p value的意义
p value的意义就是当原假设为真时,所得到的样本观察结果或更极端结果出现的概率。
如果P值(p value)很小,说明原假设情况的发生的概率很小,那么一旦出现了原假设的结果,根据小概率原理,我们就有理由拒绝原假设。P值越小,我们拒绝原假设的理由越充分。总之,P值越小,只能越有理由拒绝原假设。
但是检验的结果究竟是“显著的”、“中度显著的”还是“高度显著的”需要我们自己根据P值的大小和实际问题来判断。另外,还需注意,P值不是客观的衡量标准,它们不具备我们认为的证据的性质。但从逻辑上讲,似乎有资格作为支持或反对任何事情的衡量标准。
P值的计算:
一般地,用X表示检验的统计量,当H0为真时,可由样本数据计算出该统计量的值C,根据检验统计量X的具体分布,可求出P值。
具体地说:左侧检验的P值为检验统计量X小于样本统计值C的概率,即:P=P{X<C}右侧检验的P值为检验统计量X大于样本统计值C的概率:P=P{X>C}。
双侧检验的P值为检验统计量X落在样本统计值C为端点的尾部区域内的概率的2倍:P=2P{X>C}(当C位于分布曲线的右端时)或P=2P{X<C}(当C位于分布曲线的左端时)。若X服从正态分布和t分布,其分布曲线是关于纵轴对称的,故其P值可表示为P=P{|X|>C}。
计算出P值后,将给定的显著性水平α与P值比较,就可作出检验的结论:如果α>P值,则在显著性水平α下拒绝原假设。如果α≤P值,则在显著性水平α下不拒绝原假设。在实践中,当α=P值时,也即统计量的值C刚好等于临界值,为慎重起见,可增加样本容量,重新进行抽样检验。
2023-08-15 广告