已知n,k均大于1 的整数,求证:1+1/2k次方+1/3k次方+…..+1/nk次方 ﹤2
1个回答
展开全部
这题要用放缩法结合数学归纳法证明,证明如下:
(1)当k=2时,原式左边=1+1/2^2+1/3^2+...+1/n^2
而注意到1/n^2[n(n-1)]=1/(n-1)-1/n,(n>=2)
于是1+1/2^2+1/3^2+...+1/n^2<1+1-1/2+1/2-1/3+...+1/(n-1)-1/n=2-1/n<2
即当k=2时结论显然成立.
(2)假设k=x时结论1+1/2^x+1/3^x+...+1/n^x<2成立.则当k=x+1时,注意到此时有y原式左边=1+1/2^(x+1)+1/3^(x+1)+...+1/n^(x+1)
而由于n是大于等于2的整数,于是显然有从第二项开始i^(x+1)<i^x,(i=2,3,...,n),即1 i^x,(i="2,3,...,n),而第一项1<=1,显然成立.<br/" i^(x+1) 于是1+1/2^(x+1)+1/3^(x+1)+...+1/n^(x+1)<1+1/2^x+1/3^x+...+1/n^x<2
即囊k=x+1时结论也成立.
综合(1)、(2)知1+1/2^k+1/3^k+...+1/n^k=2都成立.
(1)当k=2时,原式左边=1+1/2^2+1/3^2+...+1/n^2
而注意到1/n^2[n(n-1)]=1/(n-1)-1/n,(n>=2)
于是1+1/2^2+1/3^2+...+1/n^2<1+1-1/2+1/2-1/3+...+1/(n-1)-1/n=2-1/n<2
即当k=2时结论显然成立.
(2)假设k=x时结论1+1/2^x+1/3^x+...+1/n^x<2成立.则当k=x+1时,注意到此时有y原式左边=1+1/2^(x+1)+1/3^(x+1)+...+1/n^(x+1)
而由于n是大于等于2的整数,于是显然有从第二项开始i^(x+1)<i^x,(i=2,3,...,n),即1 i^x,(i="2,3,...,n),而第一项1<=1,显然成立.<br/" i^(x+1) 于是1+1/2^(x+1)+1/3^(x+1)+...+1/n^(x+1)<1+1/2^x+1/3^x+...+1/n^x<2
即囊k=x+1时结论也成立.
综合(1)、(2)知1+1/2^k+1/3^k+...+1/n^k=2都成立.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询