(n+1)/(n*2+1)证明极限为0,怎么证
1个回答
展开全部
证明lim(n->∞)[(n+1)/(n^2+1)]=0
证法一:(直接证明法)
lim(n->∞)[(n+1)/(n^2+1)]=lim(n->∞)[(1/n+1/n^2)/(1+1/n^2)] (分子分母同除n^2)
=(0+0)/(1+0)
=0;
证法二:(定义证明法)
对任意ε>0,解不等式
│(n+1)/(n^2+1)-0│=(n+1)/(n^2+1)0,总存在自然数N≥[2/ε],当n>N时,有│(n+1)/(n^2+1)-0│∞)[(n+1)/(n^2+1)]=0.
证法一:(直接证明法)
lim(n->∞)[(n+1)/(n^2+1)]=lim(n->∞)[(1/n+1/n^2)/(1+1/n^2)] (分子分母同除n^2)
=(0+0)/(1+0)
=0;
证法二:(定义证明法)
对任意ε>0,解不等式
│(n+1)/(n^2+1)-0│=(n+1)/(n^2+1)0,总存在自然数N≥[2/ε],当n>N时,有│(n+1)/(n^2+1)-0│∞)[(n+1)/(n^2+1)]=0.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询