(n+1)/(n*2+1)证明极限为0,怎么证

 我来答
抛下思念17
2022-09-09 · TA获得超过1.1万个赞
知道大有可为答主
回答量:6447
采纳率:99%
帮助的人:36.5万
展开全部
证明lim(n->∞)[(n+1)/(n^2+1)]=0
证法一:(直接证明法)
lim(n->∞)[(n+1)/(n^2+1)]=lim(n->∞)[(1/n+1/n^2)/(1+1/n^2)] (分子分母同除n^2)
=(0+0)/(1+0)
=0;
证法二:(定义证明法)
对任意ε>0,解不等式
│(n+1)/(n^2+1)-0│=(n+1)/(n^2+1)0,总存在自然数N≥[2/ε],当n>N时,有│(n+1)/(n^2+1)-0│∞)[(n+1)/(n^2+1)]=0.
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式