设A为三阶实对称矩阵,满足A^2+2A=0,R(2E+A)=2求|2E+3A|

 我来答
科创17
2022-10-12 · TA获得超过5918个赞
知道小有建树答主
回答量:2846
采纳率:100%
帮助的人:177万
展开全部
设λ是A的特征值
则 λ^2+2λ 是 A^2+2A 的特征值
而 A^2=2A = 0
所以 λ^2+2λ = 0
所以 λ=0 或 λ = -2.
即A的特征值只能是 0 或 -2.
因为 r(2E+A) = 2
所以 A 的属于特征值-2的线性无关的特征向量有 3-2=1 个
所以 -2 是A的单重根
所以 A的特征值为 0,0,-2.
所以 2E+3A 的特征值为 2,2,-4
所以 |2E+3A| = 2*2*(-4) = -16.
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
上海华然企业咨询
2024-10-28 广告
作为上海华然企业咨询有限公司的一员,我们深知大模型测试对于企业数字化转型与智能决策的重要性。在应对此类测试时,我们注重数据的精准性、算法的先进性及模型的适用性,确保大模型能够精准捕捉市场动态,高效分析企业数据,为管理层提供科学、前瞻的决策支... 点击进入详情页
本回答由上海华然企业咨询提供
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式