证明1+2*2!+3*3!+4*4!+5*5!+6*6!+7*7!+到+n*n!=n(n+1)!-1?
1个回答
展开全部
1+2*2!+3*3!+4*4!+5*5!+6*6!+7*7!+到+n*n!
=2!-1!+(3-1)2!+(4-1)3!+(5-1)4!+.+(n+1-1)n!
=2!-1!+3!-2!+4!-3!+5!-4!+.+(n+1)!-n!
=(n+1)!-1!
=(n+1)!-1,2,n*n!=[(n+1)-1]*n!
=(n+1)*n!-n!
=(n+1)!-n!
所以原式=2!-1!+3!-2!+……+(n+1)!-n!=(n+1)!-1
题目不对,2,此题可以用数学归纳法证明
步骤
第一数学归纳法。若(1) p(m)为真(其中m为某一确定的自然数)(2) p(k)为真蕴含p(k+1)为真(其中k为不小于m的任一自然数)则对一切不小于m的自然数n,p(n)为真。第二数学归纳法。如果(1) p(m)为真(其中m为某一确定的自然数)(2) 对任一不小于m的自然数k,m= 2,
一号文子 幼苗
共回答了18个问题 向TA提问 举报
原式=2!-1!+3!-2!+4!-3!+……………………(n+1)!-n!=(n+1)!-1
题目多打了个n吧 1,
=2!-1!+(3-1)2!+(4-1)3!+(5-1)4!+.+(n+1-1)n!
=2!-1!+3!-2!+4!-3!+5!-4!+.+(n+1)!-n!
=(n+1)!-1!
=(n+1)!-1,2,n*n!=[(n+1)-1]*n!
=(n+1)*n!-n!
=(n+1)!-n!
所以原式=2!-1!+3!-2!+……+(n+1)!-n!=(n+1)!-1
题目不对,2,此题可以用数学归纳法证明
步骤
第一数学归纳法。若(1) p(m)为真(其中m为某一确定的自然数)(2) p(k)为真蕴含p(k+1)为真(其中k为不小于m的任一自然数)则对一切不小于m的自然数n,p(n)为真。第二数学归纳法。如果(1) p(m)为真(其中m为某一确定的自然数)(2) 对任一不小于m的自然数k,m= 2,
一号文子 幼苗
共回答了18个问题 向TA提问 举报
原式=2!-1!+3!-2!+4!-3!+……………………(n+1)!-n!=(n+1)!-1
题目多打了个n吧 1,
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询