线性回归方程如何推导呢?
1个回答
展开全部
线性回归方程的公式如下图所示:
先求x,y的平均值X,Y
再用公式代入求解:b=(x1y1+x2y2+...xnyn-nXY)/(x1+x2+...xn-nX)
后把x,y的平均数X,Y代入a=Y-bX
求出shua并代入总的公式y=bx+a得到线性回归方程。
扩展资料
线性回归方程是数理统计中通过回归分析来确定两个或多个变量之间相互依赖的数量关系的统计分析方法之一。
线性回归也是回归分析中第一类得到严格研究并在实际应用中得到广泛应用的回归分析。按自变量数量可分为一元线性回归分析方程和多元线性回归分析方程。
在统计学中,线性回归方程是一种回归分析,它使用最小二乘函数来模拟一个或多个自变量和因变量之间的关系。
这种函数是一个或多个模型参数的线性组合,称为回归系数。如果只有一个自变量,称为简单回归,如果有一个以上的自变量,称为多元回归。
(反过来,这应该通过多个因变量预测的多个线性回归来区分,而不是单个标量变量。)
参考资料百度百科-线性回归方程
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询