1/3+1/[3+5]+1/[3+5+7]+.+1/[3+5+7+.+21]=
1个回答
展开全部
分母an=3+5+7+...+(2n+1)
=(2n+1+3)*n/2=(n+2)n
∴1/an=1/[n(n+2)]=1/2[1/n-1/(n+2)]
∴1/3+1/[3+5]+1/[3+5+7]+.+1/[3+5+7+.+21]
=1/2(1-1/3)+1/2(1/2-1/4)+1/2(1/3-1/5)+.+1/2(1/9-1/11)+1/2(1/10-1/12)
=1/2(1+1/2-1/11-1/12)
=1/2(3/2-23/132)
=1/2*(198-23)/132
=175/264
=(2n+1+3)*n/2=(n+2)n
∴1/an=1/[n(n+2)]=1/2[1/n-1/(n+2)]
∴1/3+1/[3+5]+1/[3+5+7]+.+1/[3+5+7+.+21]
=1/2(1-1/3)+1/2(1/2-1/4)+1/2(1/3-1/5)+.+1/2(1/9-1/11)+1/2(1/10-1/12)
=1/2(1+1/2-1/11-1/12)
=1/2(3/2-23/132)
=1/2*(198-23)/132
=175/264
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询