利用导数的定义求函数y=根号(x^2+1)的导数?

 我来答
新科技17
2022-09-24 · TA获得超过5838个赞
知道小有建树答主
回答量:355
采纳率:100%
帮助的人:72.3万
展开全部
定义:
y'=lim dx->0 [y(x+dx)-y(x)]/dx
=lim dx->0 [根号((x+dx)^2+1)-根号(x^2+1)]/dx
分子有理化,上下同乘[根号((x+dx)^2+1)+根号(x^2+1)]
注意分子是(a-b)(a+b)=a^2-b^2,根号抵消
=lim dx->0 [((x+dx)^2+1)-(x^2+1)]/[dx(根号((x+dx)^2+1)+根号(x^2+1))]
=lim dx->0 (2x*dx+dx^2)/[dx(根号((x+dx)^2+1)+根号(x^2+1))]
=lim dx->0 (2x+dx)/[(根号((x+dx)^2+1)+根号(x^2+1))]
然后把dx=0代入,得到
y'=2x/[2根号(x^2+1)]=x/根号(x^2+1),10,y=根号(x^2+1)
y=(x^2+1)^1/2
y'=1/2(x^2+1)^-1/2,2,定义  设函数y=f(x)在点x0的某个邻域N(x0,δ)内有定义,当自变量x在x0处有增量△x(设x0+△x∈N(x0,δ)),函数y=f(x)相应的增量为△y=f(x0+△x)-f(x0).
  如果当△x→0时,函数的增量△y与自变量的增量△x之比的极限lim △y/△x=lim [f(x0+△x)-f(x0)]/△x存在,则称这个极限值为f(x)在x0处的导数或变化率.通常可以记为...,0,
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式