三角形的中线定理

 我来答
华源网络
2022-09-29 · TA获得超过5599个赞
知道小有建树答主
回答量:2486
采纳率:100%
帮助的人:148万
展开全部

三角形的中线定理

三角形的中线 :编辑三角形中,连线一个顶点和它所对边的中点的线段叫做三角形的中线。任何三角形都有三条中线,而且这三条中线都在三角形的内部,并交于一点。由定义可知,三角形的中线是一条线段。由于三角形有三条边,所以一个三角形有三条中线。且三条中线交于一点。这点称为三角形的重心。每条三角形中线分得的两个三角形面积相等。

证明三角形的中线定理

题目:△ABC的三边分别为a、b、c,边BC、CA、AB上的中线分别记为ma、mb、mc,应用余弦定理证明:ma=1/2根号下2(b的平方+c的平方)-a的平方 解:ma=√(c^2+(a/2)^2-ac*cosB)
=(1/2)√(4c^2+a^2-4ac*cosB)
由b^2=a^2+c^2-2ac*cosB
得,4ac*cosB=2a^2+2c^2-2b^2,代入上述ma表示式:
ma=(1/2)√[4c^2+a^2-(2a^2+2c^2-2b^2)]
=(1/2)√(2b^2+2c^2-a^2) 证明mb和mc的方法同ma

等边三角形的中线定理

等腰三角形三线合一,
等边三角形是等腰三角形,
所以等边三角形边上的中线垂直于这边,且平分这边的对角。

谁能告我三角形的中线定理啊,急!谢谢

三角形的中线平分这条边
三角形的三条中线交于一点,这点到顶点的
离是它到对边中点距离的2倍。该点叫做三角形的重心。
(补充:)
重心定理:三角形的三条中线交于一点,这点到顶点的
离是它到对边中点距离的2倍。该点叫做三角形的重心。
外心定理:三角形的三边的垂直平分线交于一点。该点叫做三角形的外心。
垂心定理:三角形的三条高交于一点。该点叫做三角形的垂心。
内心定理:三角形的三内角平分线交于一点。该点叫做三角形的内心。
旁心定理:三角形一内角平分线和另外两顶点处的外角平分线交于一点。该点叫做三角形的旁心。三角形有三个旁心。

全等三角形中线定理

三角形中,连线一个顶点和它所对边的中点的线段叫做三角形的中线。任何三角形都有三条中线,而且这三条中线都在三角形的内部,并交于一点由定义可知,三角形的中线是一条线段。由于三角形有三条边,所以一个三角形有三条中线。且三条中线交于一点。这点称为三角形的重心。每条三角形中线分得的两个三角形面积相等。

三角形的中位线定理?

(1)三角形中位线定义:连结三角形两边中点的线段叫做三角形的中位线.
(2)三角形中位线定理:三角形的中位线平行于第三边并且等于它的一半.
(3)逆定理一:在三角形内,与三角形的两边相交,平行且等于三角形第三边一半的线段是三角形的中位线。
(4)逆定理二:在三角形内,经过三角形一边的中点,且与另一边平行的线段,是三角形的中位线。
三角形中位线定理证明:
如图(自己画个图O(∩_∩)O),已知△ABC中,D,E分别是AB,AC两边中点。
求证DE平行且等于BC/2
证明:过C作AB的平行线交DE的延长线于F点。
∵CF∥AD
∴∠A=∠ACF
∵AE=CE、∠AED=∠CEF
∴△ADE≌△CFE
∴AD=CF
∵D为AB中点
∴AD=BD
∴BD=CF
∴BCFD是平行四边形
∴DF∥BC且DF=BC
∴DE=BC/2
∴三角形的中位线定理成立.

三角形中线定理证明

1.欲证DE=BC/2这种线段的倍半问题,往往可以将短的线段放大,转化为证明两线段相等,此题可将线段DE延长一倍至F,再连FC,把问题转化为证明四边形DFCB为平行四边形。
证明:延长DE到F使DE=EF,联结FC
∵DE是△ABC的中位线
∴AE=EC AD=DB
∵∠AED=∠CEF
∴△ADE≌△FEC
∴AD=FC
∴DB=FC
∴∠A=∠ECF
∵CF‖AB
∴DBCF是平行四边形
∴DF=BC
∴DE‖BC
2.八年级下册第四章已学习过相似图形,也可以利用相似三角形的知识来解决。
∵AD=(1/2)AB,AE=(1/2)AC,∠DAE=∠BAC,
∴△ADE∽△ABC.
∴∠ADE=∠ABC,DE:BC=AD:AB=1:2.
∴DE‖BC,DE=(1/2)BC.
3.也可以用截长补短的方法构造全等三角形,再证出平行四边形,得出结论。

三角形的外角定理

三角形任何一个外角等于不相邻的三角形的两内角和

三角形的中线有什么公式和定理?

1三角形的中线可将三角形分成面积相等的两部分
2三角形的三条中线交与一点,这一点叫三角形的重心。即平衡点
3重心可将每一条中线分为二比一
即重心到顶点的距离与重心到相应中点的距离的比为二比一
4三条中线可将三角形分成面积相等的六部分
不知对你有没有帮助?

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式