3个回答
展开全部
let
S = 1.(-1/2)^1 +2.(-1/2)^2+...+n.(-1/2)^n (1)
(-1/2)S = 1.(-1/2)^2 +2.(-1/2)^3+...+n.(-1/2)^(n+1) (2)
(1)-(2)
(3/2)S = [ -1/2 +(-1/2)^2+...+-(1/2)^n ] -n.(-1/2)^(n+1)
= -(1/3)[ 1 - (-1/2)^n) ] -n.(-1/2)^(n+1)
S = -(2/9)[ 1 - (-1/2)^n) ] -(2/3)n.(-1/2)^(n+1)
an = n.(-1/2)^n -1
Sn
=a1+a2+...+an
=S - n
=-(2/9)[ 1 - (-1/2)^n) ] -(2/3)n.(-1/2)^(n+1) -n
S = 1.(-1/2)^1 +2.(-1/2)^2+...+n.(-1/2)^n (1)
(-1/2)S = 1.(-1/2)^2 +2.(-1/2)^3+...+n.(-1/2)^(n+1) (2)
(1)-(2)
(3/2)S = [ -1/2 +(-1/2)^2+...+-(1/2)^n ] -n.(-1/2)^(n+1)
= -(1/3)[ 1 - (-1/2)^n) ] -n.(-1/2)^(n+1)
S = -(2/9)[ 1 - (-1/2)^n) ] -(2/3)n.(-1/2)^(n+1)
an = n.(-1/2)^n -1
Sn
=a1+a2+...+an
=S - n
=-(2/9)[ 1 - (-1/2)^n) ] -(2/3)n.(-1/2)^(n+1) -n
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2023-01-10 · 知道合伙人教育行家
关注
展开全部
令 an=bn-1,下面先求 bn 的前 n 项和 Tn,有
Tn=1*(-1/2)¹+2*(-1/2)²+.....+n*(-1/2)ⁿ,
(-1/2)*Tn=1*(-1/2)²+2*(-1/2)³+....+n*(-1/2)ⁿ⁺¹,
相减得 (3/2)*Tn=(-1/2)¹+(-1/2)²+....+(-1/2)ⁿ-n*(-1/2)ⁿ⁺¹
=(-1/2)[1-(-1/2)ⁿ] / [1-(-1/2)]-n*(-1/2)ⁿ⁺¹
=(自己化简吧)
总之用错位相消法,
最后 Sn=Tn-n
Tn=1*(-1/2)¹+2*(-1/2)²+.....+n*(-1/2)ⁿ,
(-1/2)*Tn=1*(-1/2)²+2*(-1/2)³+....+n*(-1/2)ⁿ⁺¹,
相减得 (3/2)*Tn=(-1/2)¹+(-1/2)²+....+(-1/2)ⁿ-n*(-1/2)ⁿ⁺¹
=(-1/2)[1-(-1/2)ⁿ] / [1-(-1/2)]-n*(-1/2)ⁿ⁺¹
=(自己化简吧)
总之用错位相消法,
最后 Sn=Tn-n
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询