函数极限怎么求?

 我来答
supeff
2022-12-27
知道答主
回答量:37
采纳率:0%
帮助的人:1.8万
展开全部
求函数的极限,需要分析函数在极限点处的行为。这可以通过使用定义、极限定义、或者某些特殊函数的性质来完成。
例如,对于函数 f(x),假设我们想要求出它在 x=a 处的极限。我们可以使用以下方法:
定义法:对于任意 ε > 0,都存在 δ > 0,使得当 0 < |x - a| < δ 时,|f(x) - L| < ε。这意味着,当 x 足够接近 a 时,f(x) 就会足够接近 L。
极限定义:当 x 足够接近 a 时,f(x) 就会足够接近 L。这是极限的定义,但是它并不告诉我们如何去计算极限。
特殊函数的性质:对于一些常见的函数,例如幂函数、对数函数、三角函数等,我们可以使用它们的性质来求解极限。
例如,对于函数 f(x)=x^2,我们可以使用定义法求出它在 x=0 处的极限:
设 L=0,对于任意 ε > 0,我们可以设 δ=ε。
当 0 < |x - 0| < δ 时,|f(x) - L| = |x^2 - 0| = |x^2| = x^2。
由于 x^2 > 0,所以 x^2 < ε,当 x 足够接近 0 时,f(x) 就会足够接近
完满且闲雅灬抹香鲸P
2022-12-27 · TA获得超过1.7万个赞
知道小有建树答主
回答量:380
采纳率:0%
帮助的人:71.2万
展开全部

求连续区间的步骤:求连续区间,按照函数连续性的定义去做即可。设函数y=f(x)在x0点附近有定义,如果有lim(x->x0) f(x)=f(x0),则称函数f在x0点连续。如果定义在区间I上的函数在每一点x∈I都连续,则说f在I上连续。

步骤

连续函数

定义

连续函数是指函数y=f(x)当自变量x的变化很小时,所引起的因变量y的变化也很小。例如,气温随时间变化,只要时间变化很小,气温的变化也是很小的;又如,自由落体的位移随时间变化,只要时间变化足够短,位移的变化也是很小的。对于这种现象,因变量关于自变量是连续变化的,连续函数在直角坐标系中的图像是一条没有断裂的连续曲线。由极限的性质可知,一个函数在某点连续的充要条件是它在该点左右都连续。

法则

定理一、在某点连续的有限个函数经有限次和,差,积,商(分母不为0)运算,结果仍是一个在该点连续的函数。

定理二、连续单调递增(递减)函数的反函数,也连续单调递增(递减)。

定理三、连续函数的复合函数是连续的。

函数极限

定义

函数极限可以分成x→∞,x→+∞,x→-∞,x→Xo,,而运用ε-δ定义更多的见诸于已知极限值的

证明题中。掌握这类证明对初学者深刻理解运用极限定义大有裨益。以x→Xo的极限为例,f(x)在点Xo以A为极限的定义是:对于任意给定的正数ε(无论它多么小),总存在正数δ,使得当x满足不等式0<|x-x。|<δ时,对应的函数值f(x)都满足不等式:|f(x)-A|<ε,那么常数A就叫做函数f(x)当x→x。时的极限。

存在准则

1.夹逼定理

(1)当x∈U(Xo,r)(这是Xo的去心邻域,有个符号打不出)时,有g(x)≤f(x)≤h(x)成立

(2)g(x)—>Xo=A,h(x)—>Xo=A,那么,f(x)极限存在,且等于A

不但能证明极限存在,还可以求极限,主要用放缩法。

2.单调有界准则:单调增加(减少)有上(下)界的数列必定收敛。

在运用以上两条去求函数的极限时尤需注意以下关键之点。一是先要用单调有界定理证明收敛,然后再求极限值。二是应用夹挤定理的关键是找到极限值相同的函数,并且要满足极限是趋于同一方向,从而证明或求得函数的极限值。

3.柯西准则

数列收敛的充分必要条件是任给ε>0,存在N(ε),使得当n>N,m>N时,都有|am-an|<ε成立。

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式