xarctanx不定积分
1个回答
展开全部
xarctanx不定积分:∫xarctanxdx=∫arctanxd(x²/2)=(x²/2)arctanx-(1/2)∫x²d(arctanx)=(1/2)x²arctanx-(1/2)∫x²/(x²+1)dx=(1/2)x²arctanx-(1/2)∫[(x²+1)-1]/(x²+1)dx=(1/2)x²arctanx-(1/2)∫dx+(1/2)∫dx/(x²+1)=(1/2)x²arctanx-x/2+(1/2)arctanx+C。
在微积分中,一个函数f的不定积分,或原函数,或反导数,是一个导数等于f的函数F,即F′=f。不定积分和定积分间的关系由微积分基本定理确定。其中F是f的不定积分。定积分是一个数,而不定积分是一个表达式,它们仅仅是数学上有一个计算关系。一个函数,可以存在不定积分,而不存在定积分,也可以存在定积分,而没有不定积分。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询