法向量求cos二面角公式
展开全部
法向量求cos二面角的余弦 = m*n/(|m||n|)。
平面内的一条直线把平面分为两部分,其中的每一部分都叫做半平面,从一条直线出发的两个半平面所组成的图形,叫做二面角(这条直线叫做二面角的棱,每个半平面叫做二面角的面)。
二面角一般都是在两个平面的相交线上,取恰当的点,经常是端点和中点。过这个点分别在两平面做相交线的垂线,然后把两条垂线放到一个三角形中考虑。有时也经常做两条垂线的平行线,使他们在一个更理想的三角形中。
由公式S射影=S斜面cosθ,作出二面角的平面角直接求出。运用这一方法的关键是从图中找出斜面多边形和它在有关平面上的射影,而且它们的面积容易求得。
也可以用解析几何的办法,把两平面的法向量n1,n2的坐标求出来。然后根据n1·n2=|n1||n2|cosα,θ=α为两平面的夹角。这里需要注意的是如果两个法向量都是垂直平面,指向两平面内,所求两平面的夹角θ=π-α。
如果已经求得各点坐标,能够建系,就用“法向量法”,所谓法向量,是指垂直于一个平面的直线,根据向量可在平面内任意平移,我们可以知道,一个平面的法向量有无数多条。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询