怎么证明1/ n> ln(n+1)/ n?
1个回答
展开全部
Sn=1+1/2+1/3+...+1/n是调和级数,也是一个发散级数,它没有通项公式。但它可以用一些公式去逼近它的和,如有:1+1/2+1/3+...+1/n>ln(n+1),当n很大时,它们之间的差就非常小,这时就可以近似用ln(n+1)来代替。由x>ln(x+1)(x>0),这可以利用导数证明,略。然后取x=1/n,所以1/n>ln(1/n+1)=ln(n+1)-lnn,然后由1/n>ln(n+1)-lnn进行累加,就可得1+1/2+1/3+...+1/n>ln(n+1)。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询