为什么| x|<1?
1个回答
展开全部
另an=nx^(n-1) 由a(n+1)/an=(n/(n-1))*x<1可得
|x|<1 所以收敛域为:|x|<1
Sn=1+2x+3x^2+...+nx^(n-1)
xSn=1x+2x^2+3x^3+...+nx^n
相减得:(1-x)Sn=1+x+x^2+....+x^(n-1)-nx^n
=1+(x(-1x^(n-1)))/(1-x)-nx^n
取极限可得S=1+x/(1-x)=1/(1-x) S即为和函数
|x|<1 所以收敛域为:|x|<1
Sn=1+2x+3x^2+...+nx^(n-1)
xSn=1x+2x^2+3x^3+...+nx^n
相减得:(1-x)Sn=1+x+x^2+....+x^(n-1)-nx^n
=1+(x(-1x^(n-1)))/(1-x)-nx^n
取极限可得S=1+x/(1-x)=1/(1-x) S即为和函数
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询