怎么求函数的偏导数?

 我来答
数码宝贝7Q
2023-06-22 · TA获得超过5443个赞
知道小有建树答主
回答量:1044
采纳率:100%
帮助的人:19.1万
展开全部

对x求偏导数,就是将y看作常数

z=arctany/x

那么得到

∂z/∂x=1/(1+y²/x²)*∂(y/x)/∂x

=1/(1+y²/x²)*(-y/x²)

=-y/(x²+y²)

于是继续求偏导数得到

∂²z/∂x²=∂[-y/(x²+y²)]/∂x

=y/(x²+y²)²*∂(x²+y²)/∂x

=y/(x²+y²)²*2x

=2xy/(x²+y²)²

x方向的偏导

设有二元函数 z=f(x,y) ,点(x0,y0)是其定义域D 内一点。把 y 固定在 y0而让 x 在 x0 有增量 △x ,相应地函数 z=f(x,y) 有增量(称为对 x 的偏增量)△z=f(x0+△x,y0)-f(x0,y0)。

如果 △z 与 △x 之比当 △x→0 时的极限存在,那么此极限值称为函数 z=f(x,y) 在 (x0,y0)处对 x 的偏导数,记作 f'x(x0,y0)或函数 z=f(x,y) 在(x0,y0)处对 x 的偏导数,实际上就是把 y 固定在 y0看成常数后,一元函数z=f(x,y0)在 x0处的导数。

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式