矩阵求导

请问如何对矩阵进行求导。有没有相关的介绍。... 请问如何对矩阵进行求导。
有没有相关的介绍。
展开
 我来答
s306050124
推荐于2017-09-05 · TA获得超过532个赞
知道小有建树答主
回答量:101
采纳率:0%
帮助的人:101万
展开全部
矩阵的微分是函数导数的概念形式推广到矩阵的情形。矩阵微分根据对不同变量的求导,有不同形式。

定义一: 设m×n矩阵
A(t)=【amn(t)】
的每个元素aij(t)都是自变量t的可导函数,则称m×n矩阵【δamn(t)/δt】为A(t)关于变量t的导数,记为δA(t)/δt;

定义二:设A为m×n阵,f(A)为矩阵A的数量值函数。若f(A)关于A的任一元素aij的偏导δf/ δaij都存在,则称【δf/δamn】为f(A)关于A=(aij)的导数,记为δf(A)/δA;

定义三:设A为m×n维矩阵型变量,A=(aij),G(A)维A的矩阵值函数(p×q维)即G(A)=【g(A)pq】,其中g(A)ij都为A的数值量函数,且关于A可导,则称【δG/δaij】=△⊙G(△应是倒三角,为[δ/δaij],Hamilton算子矩阵;⊙应是乘号加圈,为Kronecker积);

可以参考矩阵论的相关书籍。
殳妮危又晴
2019-07-19 · TA获得超过3798个赞
知道大有可为答主
回答量:3210
采纳率:32%
帮助的人:478万
展开全部
你的记号看着就别扭。
设x是列向量,F(x)是关于x的函数,若存在函数G(x)使得
F(x+dx)=F(x)+G(x)^T
*
dx
+
O(||dx||^2)
(dx表示\Delta
x,是和x同阶的无穷小向量,A^T表示A的转置)
那么定义G(x)为F(x)的导函数F'(x)=G(x)。(F'表示导数,不是你的转置)
利用定义自己推一下就知道
(x^T*A*x)'=2Ax
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式