已知圆C(X+2)^2+Y^2=4 相互垂直的两条直线L1 L2都过(2,0),若圆心M(1,m)的圆和圆C外切且与L1 L2相

已知圆C(X+2)^2+Y^2=4相互垂直的两条直线L1L2都过(2,0),若圆心M(1,m)的圆和圆C外切且与L1L2相切求圆M的方程... 已知圆C(X+2)^2+Y^2=4 相互垂直的两条直线L1 L2都过(2,0),若圆心M(1,m)的圆和圆C外切且与L1 L2相切求圆M的方程 展开
匿名用户
2011-01-12
展开全部
依题意,可设圆M的方程为:(x- 1)^2+(y-m)^2=r^2,
而圆C的圆心为 (-2,0), 半径为2,圆M与圆C外切,
所以(1+2)^2+(m-0)^2=(r+2)^2 ,化简得: m^2=r^2+4r-5..............(1)。
又相互垂直的两条直线L1、 L2都过(2,0),且与圆M 相切,
故圆M的圆心(1,m)与L1、L2的垂足(2,0)的连线平分直角,
且其长为圆M的半径的(根号2)倍。
即 (1-2)^2+(m-0)^2=(根号2*r)^2 ,化简得: m^2=2r^2-1.............(2).
联立(1)、(2),解方程组,得: r=2, m= 根号7 或 -根号7。
所以所求圆M的方程为:(x-1)^2+(y-根号7)^2=4 或 (x-1)^2+(y+根号7)^2=4。
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式