证明函数f(x)=x+1/x 在 【1,正无穷)为增函数

瞬弟弟
2011-01-13 · TA获得超过1.8万个赞
知道大有可为答主
回答量:4121
采纳率:50%
帮助的人:2194万
展开全部
解:f(x)=x+1/x在(1,+∞)上是增函数
证明如下:
令x1、x2∈(1,+∞),且x1<x2,即:1<x1<x2
故:x1-x2<0,x1•x2>1,x1•x2>0
故:x1•x2-1>0
故:f(x1)-f(x2)= x1+1/x1-(x2+1/x2)
=(x1-x2)+(1/x1-1/x2)
=(x1-x2)+(x2-x1)/(x1•x2)
=(x1-x2) •[1-1/(x1•x2)]
=(x1-x2) •[(x1•x2-1)/(x1•x2)] <0
故:f(x1) <f(x2)
故:f(x)=x+1/x在(1,+∞)上是增函数
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式