设常数a>=0,函数f(x)=x-lnx^2+2alnx-1(x属于0,正无穷)求证:当x>1时恒有x>lnx^2-2alnx+1这是哪年的高考

 我来答
370116
高赞答主

2011-01-14 · 你的赞同是对我最大的认可哦
知道顶级答主
回答量:9.6万
采纳率:76%
帮助的人:6.3亿
展开全部
f(1)=0
只需证明:f(x)>f(1)
只需证明当x>1时单调增。
f'(x)=1-(2lnx)/x+2a/x=(2a+x-2lnx)/x
只需证明:2a+x-2lnx>0
上式左边再求导数:1-2/x,令此式为0
得到x=2时2a+x-2lnx取到最小值为:
2a+2-2ln2=2(a+1-ln2)>2(a+1-lne)=2a>=0
所以:x>1时,2a+x-2lnx>0得证。
结论得证。
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式