若在椭圆上存在一点P,求椭圆离心率的取值范围
设x^2/a^2+y^2/b^2=1(a>b>0)的两焦点分别为F1、F2,若在椭圆上存在点P,使PF⊥PF2,求椭圆离心率的取值范围...
设x^2/a^2+y^2/b^2=1(a>b>0)的两焦点分别为F1、F2,若在椭圆上存在点P,使PF⊥PF2,求椭圆离心率的取值范围
展开
2个回答
展开全部
【常规解法】
设P(x0,y0),
PF⊥PF2,则y0/(x0+c)•/(x0-c)=-1,y0²=c²-x0².
点P在椭圆上,则x0^2/a^2+y0^2/b^2=1,
将y0²=c²-x0²代入上式:x0^2/a^2+( c²-x0²) /b^2=1,
x0^2= a^2( c²-b²)/c^2
∵点P在椭圆上,∴0≤x0^2≤a^2
∴0≤a ^2( c²-b²)/c^2≤a^2
c²-b²≥0,c²-(a²-c²) ≥0,2c²≥a²
∴√2/2≤c/a<1.
即离心率e∈[√2/2,1).
【简便方法】
当动点P运动到短轴端点B处时,∠F1BF2最大。
若在椭圆上存在点P,使PF⊥PF2,则最大角∠F1BF2≥90°,
从而∠OB F1≥45°,而sin∠OB F1=|O F1|/| B F1|,即sin∠OB F1=c/a.
又sin∠OB F1≥√2/2,
∴c/a≥√2/2, 离心率e∈[√2/2,1).
设P(x0,y0),
PF⊥PF2,则y0/(x0+c)•/(x0-c)=-1,y0²=c²-x0².
点P在椭圆上,则x0^2/a^2+y0^2/b^2=1,
将y0²=c²-x0²代入上式:x0^2/a^2+( c²-x0²) /b^2=1,
x0^2= a^2( c²-b²)/c^2
∵点P在椭圆上,∴0≤x0^2≤a^2
∴0≤a ^2( c²-b²)/c^2≤a^2
c²-b²≥0,c²-(a²-c²) ≥0,2c²≥a²
∴√2/2≤c/a<1.
即离心率e∈[√2/2,1).
【简便方法】
当动点P运动到短轴端点B处时,∠F1BF2最大。
若在椭圆上存在点P,使PF⊥PF2,则最大角∠F1BF2≥90°,
从而∠OB F1≥45°,而sin∠OB F1=|O F1|/| B F1|,即sin∠OB F1=c/a.
又sin∠OB F1≥√2/2,
∴c/a≥√2/2, 离心率e∈[√2/2,1).
Sievers分析仪
2024-10-13 广告
2024-10-13 广告
是的。传统上,对于符合要求的内毒素检测,最终用户必须从标准内毒素库存瓶中构建至少一式两份三点标准曲线;必须有重复的阴性控制;每个样品和PPC必须一式两份。有了Sievers Eclipse内毒素检测仪,这些步骤可以通过使用预嵌入的内毒素标准...
点击进入详情页
本回答由Sievers分析仪提供
展开全部
设P(x0,y0),
PF⊥PF2,则y0/(x0+c)•/(x0-c)=-1,y0²=c²-x0².
点P在椭圆上,则x0^2/a^2+y0^2/b^2=1,
将y0²=c²-x0²代入上式:x0^2/a^2+( c²-x0²) /b^2=1,
x0^2= a^2( c²-b²)/c^2
∵点P在椭圆上,∴0≤x0^2≤a^2
∴0≤a ^2( c²-b²)/c^2≤a^2
c²-b²≥0,c²-(a²-c²) ≥0,2c²≥a²
∴√2/2≤c/a
PF⊥PF2,则y0/(x0+c)•/(x0-c)=-1,y0²=c²-x0².
点P在椭圆上,则x0^2/a^2+y0^2/b^2=1,
将y0²=c²-x0²代入上式:x0^2/a^2+( c²-x0²) /b^2=1,
x0^2= a^2( c²-b²)/c^2
∵点P在椭圆上,∴0≤x0^2≤a^2
∴0≤a ^2( c²-b²)/c^2≤a^2
c²-b²≥0,c²-(a²-c²) ≥0,2c²≥a²
∴√2/2≤c/a
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询