若方程2 sin(x+π/3)+2a-1=0在[0,π]上有两个不相等的实数根,则a取值范围是
5个回答
展开全部
2 sin(x+π/3)+2a-1=0
sin(x+π/3)=(1-2a)/2
在[0,π],有两个不相等的实数根x+π/3在[π/3,2π/3]
√3/2<= sin(x+π/3)=(1-2a)/2<=1
a取值范围
-1/2<=a<=(2-√3)/4
sin(x+π/3)=(1-2a)/2
在[0,π],有两个不相等的实数根x+π/3在[π/3,2π/3]
√3/2<= sin(x+π/3)=(1-2a)/2<=1
a取值范围
-1/2<=a<=(2-√3)/4
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
1>=sin(x+π/3)=1/2-a>=sinπ/3,即1>=1/2-a>=sinπ/3
所以,-1/2<=a<=1/2-sinπ/3
所以,-1/2<=a<=1/2-sinπ/3
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
2 sin(x+π/3)+2a-1=0
sin(x+π/3)=(1-2a)/2
x∈[0,π], x+π/3∈[π/3,4π/3]
-√3/2=sin4π/3<= sin(x+π/3)<=sinπ/2=1
-√3/2<=(1-2a)/2<=1
-1/2<=a<=1/2+√3/2
sin(x+π/3)=(1-2a)/2
x∈[0,π], x+π/3∈[π/3,4π/3]
-√3/2=sin4π/3<= sin(x+π/3)<=sinπ/2=1
-√3/2<=(1-2a)/2<=1
-1/2<=a<=1/2+√3/2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
数形结合与因式分解相结合。先将方程2 sin(x+π/3)+2a-1=0
变形为:sin(x+π/3)=(1-2a)/2;设x+π/3=t,在[0,π],上计算出tde 范围:[π/3,2π/3]
作出函数y=sin(t)在区间:[π/3,2π/3]上的图像,再作直线y=(1-2a)/2,确定其有两个交点时的范围即可。 答案:1/2<=a<=(2-√3)/4
变形为:sin(x+π/3)=(1-2a)/2;设x+π/3=t,在[0,π],上计算出tde 范围:[π/3,2π/3]
作出函数y=sin(t)在区间:[π/3,2π/3]上的图像,再作直线y=(1-2a)/2,确定其有两个交点时的范围即可。 答案:1/2<=a<=(2-√3)/4
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询