3个回答
展开全部
1、首先:初等矩阵都可逆;
2、其次,初等矩阵的逆矩阵其实是一个同类型的初等矩阵(可看作逆变换)。
3、初等矩阵是由单位矩阵经过一次三种矩阵初等变换得到的矩阵。初等矩阵的模样可以写一个3阶或者4阶的单位矩阵。初等变换有三种:
(1)交换矩阵中某两行(列)的位置;
(2)用一个非零常数k乘以矩阵的某一行(列);
(3)将矩阵的某一行(列)乘以常数k后加到另一行(列)上去。
扩展资料:
初等矩阵的应用:
1、在解线性方程组中的应用
初等行变换不影响线性方程组的解,也可用于高斯消元法,用于逐渐将系数矩阵化为标准形。初等行变换不改变矩阵的核(故不改变解集),但改变了矩阵的像。反过来,初等列变换没有改变像却改变了核。
2、用于求解一个矩阵的逆矩阵
有的时候,当矩阵的阶数比较高的时候,使用其行列式的值和伴随矩阵求解其逆矩阵会产生较大的计算量。这时,通常使用将原矩阵和相同行数(也等于列数)的单位矩阵并排,再使用初等变换的方法将这个并排矩阵的左边化为单位矩阵,这时,右边的矩阵即为原矩阵的逆矩阵。
Sievers分析仪
2024-12-30 广告
2024-12-30 广告
是的。传统上,对于符合要求的内毒素检测,最终用户必须从标准内毒素库存瓶中构建至少一式两份三点标准曲线;必须有重复的阴性控制;每个样品和PPC必须一式两份。有了Sievers Eclipse内毒素检测仪,这些步骤可以通过使用预嵌入的内毒素标准...
点击进入详情页
本回答由Sievers分析仪提供
展开全部
初等矩阵是指得通过对单位阵行列初等变换可以得到的矩阵。
判断依据有:1.对于实单位矩阵进行初等变换,得到的结果一定是实矩阵,所以凡事有变量和复数的都不是实数域下的初等矩阵,但是要注意如果题目当中注明了某个符号代表常数则符号按照常数处理。2.初等变换不改变矩阵的秩,单位阵一定是满秩的。所以初等矩阵一定满秩。判断行列式的值是否为0或者行列式是否满秩即可。
判断依据有:1.对于实单位矩阵进行初等变换,得到的结果一定是实矩阵,所以凡事有变量和复数的都不是实数域下的初等矩阵,但是要注意如果题目当中注明了某个符号代表常数则符号按照常数处理。2.初等变换不改变矩阵的秩,单位阵一定是满秩的。所以初等矩阵一定满秩。判断行列式的值是否为0或者行列式是否满秩即可。
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
初等矩阵是指,由单位矩阵经过一次矩阵初等变换得到的矩阵。 初等变换有三种 (1)交换矩阵中某两行(列)的位置; (2)用一个非零常数k乘以矩阵的某一行; (3)将矩阵的某一行(列)乘以常数k后加到另一行上去。 三类初等矩阵都是可逆矩阵,即非奇异阵。 三类初等矩阵行列式的值是: (1):-1 (2):k (3):1
编辑本段性质
1、单位矩阵第i,j两行(列)互换得到的方阵为Pij。将矩阵B的第i,j两行(列)互换所得矩阵B1,即有PijB=B1 2、单位矩阵第i行(列)乘以常数k得到初等方阵Di(k),将矩阵B的第i行(列)乘以k得到矩阵B2,即有B2=Di(k)B. 3、将单位矩阵的第j行(列)的k倍加到第i行(列)得到初等方阵Tij(k),矩阵B的第j行(列)的k倍加到第i行(列)得到矩阵B3,即有B3=Tij(k)B。矩阵B的第i列的k倍加到第j列得到矩阵B3,即有B3=BTij(k).
编辑本段性质
1、单位矩阵第i,j两行(列)互换得到的方阵为Pij。将矩阵B的第i,j两行(列)互换所得矩阵B1,即有PijB=B1 2、单位矩阵第i行(列)乘以常数k得到初等方阵Di(k),将矩阵B的第i行(列)乘以k得到矩阵B2,即有B2=Di(k)B. 3、将单位矩阵的第j行(列)的k倍加到第i行(列)得到初等方阵Tij(k),矩阵B的第j行(列)的k倍加到第i行(列)得到矩阵B3,即有B3=Tij(k)B。矩阵B的第i列的k倍加到第j列得到矩阵B3,即有B3=BTij(k).
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询