如图,已知△ABC中,∠ABC=90°,AB=BC,三角形的顶点在相互平行的三条直线l1,l2,l3上,且l1,l2之间的距

如图,已知△ABC中,∠ABC=90°,AB=BC,三角形的顶点在相互平行的三条直线l1,l2,l3上,且l1,l2之间的距离为2,l2,l3之间的距离为3,则AC的长是... 如图,已知△ABC中,∠ABC=90°,AB=BC,三角形的顶点在相互平行的三条直线l1,l2,l3上,且l1,l2之间的距离为2 , l2,l3之间的距离为3 ,则AC的长是 ----- 展开
百度网友7fbcd93538
2011-01-15 · TA获得超过11万个赞
知道大有可为答主
回答量:8799
采纳率:54%
帮助的人:4906万
展开全部

根号26

螃蟹先生忒DT
2012-10-21 · TA获得超过817个赞
知道答主
回答量:91
采纳率:0%
帮助的人:19.3万
展开全部
解:
过A作AE⊥l3于E,过C作CF⊥l3于F,
则∠AEF=∠CFB=∠ABC=90°,
∴∠ABE+∠CBF=180°-90°=90°,
∠EAB+∠ABE=90°,
∴∠EAB=∠CBF,
∵在△AEB和△BFC中
∠EAB=∠CBF∠AEB=∠CFBAB=BC

∴△AEB≌△BFC(AAS),
∴AE=BF=2,BE=CF=2+1=3,
由勾股定理得:AB=BC=
22+32
=
13

由勾股定理得:AC=
(13)2+(13)2
=
26 ,
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
2459928418陈
2012-10-04 · TA获得超过108个赞
知道答主
回答量:49
采纳率:0%
帮助的人:16.9万
展开全部
解:作AD⊥l3于D,作CE⊥l3于E,
∵∠ABC=90°,
∴∠ABD+∠CBE=90°
又∠DAB+∠ABD=90°
∴∠BAD=∠CBE
又AB=BC,∠ADB=∠BEC
∴△ABD≌△BCE
∴BE=AD=3
在Rt△BCE中,根据勾股定理,得BC=25+9=34,
在Rt△ABC中,根据勾股定理,得AC=34×2=68;
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式