已知函数Y=f(x)是定义在R上的奇函数,当X<0时,f(X)=x²+2x。

(1).求f(1)的值,并求当x>0时f(x)的解析式(2).是否存在实数a、b(其中0≤a<b),使得f(x)在[a,b]上的值域为[a,b]?若存在,求出所有的a,b... (1).求f(1)的值,并求当x>0时f(x)的解析式
(2).是否存在实数a、b(其中0≤a<b),使得f(x)在[a,b]上的值域为[a,b]?若存在,求出所有的a,b的值,若不在,说明理由。
要过程
展开
little_huo
2011-01-16 · TA获得超过284个赞
知道答主
回答量:43
采纳率:0%
帮助的人:56.5万
展开全部
解:f(x)是奇函数,所以f(x)+f(-x)=0
(1) f(-1)=-1,所以f(1)=-f(-1)=1
x>0时,f(x)=-f(-x)=-((-x)^2+2(-x))=-x^2+2x
(2)x>0时,f(x)=-x^2+2x=-(x-1)^2+1<=1,若存在满足要求的a,b,则b<=1
在区间[0,1]上,f(x)单调递增,f(0)=0,f(1)=1,故f(x)在[0,1]的值域为[0,1],即得:a=0,b=1满足题意
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式