求解高二数学题
设斜率为2的直线l过抛物线y²=ax(a>0)的焦点F,且和y轴交于点A,若△OAF(O为原点坐标)的面积为4,求此抛物线的方程建造一个面积为360㎡的矩形场地...
设斜率为2的直线l过抛物线y²=ax(a>0)的焦点F,且和y轴交于点A,若△OAF(O为原点坐标)的面积为4,求此抛物线的方程
建造一个面积为360㎡的矩形场地,要求矩形场地的一面利用旧墙(利用旧墙需维修),其他三面围墙要新建,在旧墙的对面的新墙上要留一个宽度为2m的进出口,如图所示,已知旧墙的维修费用为45元/m,新墙的造价为180元/m,设利用的旧墙长度为x(x>2,单位:m)修建此矩形场地围墙的总费用为y(单位:元) (1)将y表示为x的函数 (2)试确定x,使维修此矩形场地围墙的总费用最小.并求出总费用 线性规划这个题的图如下
---------------------------------
| |
| |
| -------------x------------- |
--------------出口-------------- 展开
建造一个面积为360㎡的矩形场地,要求矩形场地的一面利用旧墙(利用旧墙需维修),其他三面围墙要新建,在旧墙的对面的新墙上要留一个宽度为2m的进出口,如图所示,已知旧墙的维修费用为45元/m,新墙的造价为180元/m,设利用的旧墙长度为x(x>2,单位:m)修建此矩形场地围墙的总费用为y(单位:元) (1)将y表示为x的函数 (2)试确定x,使维修此矩形场地围墙的总费用最小.并求出总费用 线性规划这个题的图如下
---------------------------------
| |
| |
| -------------x------------- |
--------------出口-------------- 展开
展开全部
1,抛物线y^2=ax(a>0)的焦点F坐标为(a/4,0),
所以直线L的方程为:y=2x-a/2,
直线L与y轴交于点A坐标为(0,-a/2),
所以△OAF的面积=1/2*|-a/2|*(a/4)=a^2/16=4
a=8,
所以 抛物线的方程为:y^2=8x。
2,(1)函数为:y=129600/x+45x-360 (x>2)。
(2)y=129600/x+45x-360 =45*(2880/x+x)-360
2880/x+x>=2√2880=48√5,
当且仅当 x=2880/x时,不等式取等号。
即x=24√5时,y值最小,为:y=2160√5-360。
所以 利用旧墙长度为24√5米时, 建造围墙的总费用最小,为2160√5-360元。
所以直线L的方程为:y=2x-a/2,
直线L与y轴交于点A坐标为(0,-a/2),
所以△OAF的面积=1/2*|-a/2|*(a/4)=a^2/16=4
a=8,
所以 抛物线的方程为:y^2=8x。
2,(1)函数为:y=129600/x+45x-360 (x>2)。
(2)y=129600/x+45x-360 =45*(2880/x+x)-360
2880/x+x>=2√2880=48√5,
当且仅当 x=2880/x时,不等式取等号。
即x=24√5时,y值最小,为:y=2160√5-360。
所以 利用旧墙长度为24√5米时, 建造围墙的总费用最小,为2160√5-360元。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询