直线系方程 过定点的直线系方程有两种设法
过定点的直线系方程有两种设法:1A1x+B1y+C1+λ(A2x+B2y+C2)=0(λ为参数)2n(A1x+B1y+C1)+λ(A2x+B2y+C2)=0(n.λ为参数...
过定点的直线系方程有两种设法:1A1x+B1y+C1+λ(A2x+B2y+C2)=0(λ为参数) 2 n(A1x+B1y+C1)+λ(A2x+B2y+C2)=0(n.λ为参数)
为什么1会比2少一条直线?
请讲解的详细点。本人基础不太好
谢谢
一楼,这块没看懂
要相等则x,y系数和常数都是0
A1+(λ-1)A2=0
B1+(λ-1)B2=0
C1+(λ-1)C2=0
则A1/A2=B1/B2=C1/C2=1-λ
如果过交点,那么A1x+B1y+C1=0,A2x+B2y+C2=0
那不就是0+(λ-1)*0也=0吗,也符合啊 展开
为什么1会比2少一条直线?
请讲解的详细点。本人基础不太好
谢谢
一楼,这块没看懂
要相等则x,y系数和常数都是0
A1+(λ-1)A2=0
B1+(λ-1)B2=0
C1+(λ-1)C2=0
则A1/A2=B1/B2=C1/C2=1-λ
如果过交点,那么A1x+B1y+C1=0,A2x+B2y+C2=0
那不就是0+(λ-1)*0也=0吗,也符合啊 展开
展开全部
少了A2x+B2y+C2=0这条直线。
原因:
A1x+B1y+C1+λ(A2x+B2y+C2)=0(λ为参数)(1)
n(A1x+B1y+C1)+λ(A2x+B2y+C2)=0(n.λ为参数)(2)
这里可以令n,λ为任意值,
当λ=0时,对于(2)式n必不为0,则(1)(2)两式相同 A1x+B1y+C1=0;
当n=0时,对于(2)式λ必不为0,则(1)为(A1+λA2)x+(B1+λB2)y+(C1+λC2)=0 (3);
(2)为A2x+B2y+C2=0 (4);
不难发现(1)是n=1的特例;
楼主可以自己试一下(1)式不会出现A2x+B2y+C2=0的情况(对ABC没有任何限制时)。
原因:
A1x+B1y+C1+λ(A2x+B2y+C2)=0(λ为参数)(1)
n(A1x+B1y+C1)+λ(A2x+B2y+C2)=0(n.λ为参数)(2)
这里可以令n,λ为任意值,
当λ=0时,对于(2)式n必不为0,则(1)(2)两式相同 A1x+B1y+C1=0;
当n=0时,对于(2)式λ必不为0,则(1)为(A1+λA2)x+(B1+λB2)y+(C1+λC2)=0 (3);
(2)为A2x+B2y+C2=0 (4);
不难发现(1)是n=1的特例;
楼主可以自己试一下(1)式不会出现A2x+B2y+C2=0的情况(对ABC没有任何限制时)。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |