3个回答
展开全部
打开括号∫(t-sint)^2sintdt
=∫t^2sintdt + ∫(sint)^3 dt - 2∫t(sint)^2 dt
分别求解(1) ∫t^2sintdt,(2) ∫(sint)^3 dt,(3)-2∫tsint dt
1:∫t^2sintdt = ∫t^2(cost)'dt = -t^2cost + ∫2tcostdt
= -t^2cost + ∫2t(sint)'dt = -t^2cost + 2tsint-2∫sintdt
= -t^2cost + 2tsint-2cost
2: ∫(sint)^3 dt = ∫(sint)^2 *sint dt = -∫(sint)^2 *d(cost) = -∫(1-(cost)^2) *d(cost)
= -∫(1d(cost)+∫(cost)^2) d(cost)
= -cost+(cost)^3/3
3: - 2∫t(sint)^2 dt = -∫t(1-cos2t)dt = -∫tdt+∫tcos2tdt = -t^2/2+(1/2)*∫t(sin2t)'dt
= -t^2/2+(tsin2t/2)+(1/4)*∫sin2td2t
= -t^2/2+(tsin2t/2)+cos2t/4
1+2+3= -t^2cost + 2tsint-2cost-cost+(cost)^3/3+-t^2/2+(tsin2t/2)+cos2t/4
(最后请使用各种三角函数公式化简)
=∫t^2sintdt + ∫(sint)^3 dt - 2∫t(sint)^2 dt
分别求解(1) ∫t^2sintdt,(2) ∫(sint)^3 dt,(3)-2∫tsint dt
1:∫t^2sintdt = ∫t^2(cost)'dt = -t^2cost + ∫2tcostdt
= -t^2cost + ∫2t(sint)'dt = -t^2cost + 2tsint-2∫sintdt
= -t^2cost + 2tsint-2cost
2: ∫(sint)^3 dt = ∫(sint)^2 *sint dt = -∫(sint)^2 *d(cost) = -∫(1-(cost)^2) *d(cost)
= -∫(1d(cost)+∫(cost)^2) d(cost)
= -cost+(cost)^3/3
3: - 2∫t(sint)^2 dt = -∫t(1-cos2t)dt = -∫tdt+∫tcos2tdt = -t^2/2+(1/2)*∫t(sin2t)'dt
= -t^2/2+(tsin2t/2)+(1/4)*∫sin2td2t
= -t^2/2+(tsin2t/2)+cos2t/4
1+2+3= -t^2cost + 2tsint-2cost-cost+(cost)^3/3+-t^2/2+(tsin2t/2)+cos2t/4
(最后请使用各种三角函数公式化简)
展开全部
解法如下:
∫(t-sint)^2sintdt
=∫(t^2sint+sint^2sint-2tsint^2)dt
=∫t^2sintdt+∫(1-cost^2)sintdt-2∫tsint^2dt
=-∫t^2dcost-∫(1-cost^2)dcost-∫t*(1-cos2t)dt
=-t^2cost+∫2costdt-cost+cost^3/3-t^2/2+∫tdsin2t
=-t^2cost+2sint-cost+cost^3/3-t^2/2+tsin2t-∫sin2tdt
=-t^2cost+2sint-cost+cost^3/3-t^2/2+tsin2t-1/2*sin2t^2
∫(t-sint)^2sintdt
=∫(t^2sint+sint^2sint-2tsint^2)dt
=∫t^2sintdt+∫(1-cost^2)sintdt-2∫tsint^2dt
=-∫t^2dcost-∫(1-cost^2)dcost-∫t*(1-cos2t)dt
=-t^2cost+∫2costdt-cost+cost^3/3-t^2/2+∫tdsin2t
=-t^2cost+2sint-cost+cost^3/3-t^2/2+tsin2t-∫sin2tdt
=-t^2cost+2sint-cost+cost^3/3-t^2/2+tsin2t-1/2*sin2t^2
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
你确定你题目没错么?sint的2sint次方?这难度太大了吧。如果是乘号的话,先分项,前边的用分部积分法则积,后边的直接凑微,就行了。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询