在三角形abc中,角a.b.c的对边分别为,a,b,c且sin2a+sin2b+sinasinb=sin2c,(1)求角C
展开全部
sin2a+sin2b+sinasinb=sin2c
sin2a+sin2b+sinasinb=sin(2a+2b)
sin2a+sin2b+sinasinb-sin2acos2b-cos2asin2b=0
sin2a(1-cos2b)+sin2b(1-cos2a)+sinasinb=0
2sinacosa * 2sinb^2 +2sinbcosb * 2sina^2 =-sinasinb
4 sinasinb (sinbcosa + sinacosb) =-sinasinb
sin(a+b) = -1/4
sinc = - 1/4
c = π - arcsin1/4
sin2a+sin2b+sinasinb=sin(2a+2b)
sin2a+sin2b+sinasinb-sin2acos2b-cos2asin2b=0
sin2a(1-cos2b)+sin2b(1-cos2a)+sinasinb=0
2sinacosa * 2sinb^2 +2sinbcosb * 2sina^2 =-sinasinb
4 sinasinb (sinbcosa + sinacosb) =-sinasinb
sin(a+b) = -1/4
sinc = - 1/4
c = π - arcsin1/4
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询