求证:tan(x+y)+tan(x-y)=sin2x/cosx*cosx-siny*siny
1个回答
展开全部
tan(x+y)+tan(x-y)
=sin(x+y)/cos(x+y)+sin(x-y)/cos(x-y)
=[sin(x+y)cos(x-y)+cos(x+y)sin(x-y)]/[cos(x+y)cos(x-y)]
=sin2x/[(cosxcosy-sinxsiny)(cosxcosy+sinxsiny)]
=sin2x/[(cosx)^2(cosy)^2-(sinx)^2(siny)^2]
=sin2x/[(cosx)^2(cosy)^2-(1-(cosx)^2)(1-(cosy)^2)]
=sin2x/[(cosx)^2+(cosy)^2-1]
=sin2x/[(cosx)^2-(siny)^2]
得证
=sin(x+y)/cos(x+y)+sin(x-y)/cos(x-y)
=[sin(x+y)cos(x-y)+cos(x+y)sin(x-y)]/[cos(x+y)cos(x-y)]
=sin2x/[(cosxcosy-sinxsiny)(cosxcosy+sinxsiny)]
=sin2x/[(cosx)^2(cosy)^2-(sinx)^2(siny)^2]
=sin2x/[(cosx)^2(cosy)^2-(1-(cosx)^2)(1-(cosy)^2)]
=sin2x/[(cosx)^2+(cosy)^2-1]
=sin2x/[(cosx)^2-(siny)^2]
得证
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询